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Before discussing how to solve linear partial differential equations
by the method of separation of variables, it is important to
summarize some of the important results on Fourier series. Joseph
Fourier developed this type of series in his famous treatise on heat
flow in the early 1800s.

1 Definitions

Definition 1.1. A function f is said to be piecewise continuous on
[a, b] if there exists finitely many points a = x1 < x2 < . . . < xn = b
such that f is continuous on [xi, xi+1] and

lim
x→x

+

i

f(x), lim
x→x

−

i+1

f(x)

exist for i = 1, 2, . . . , n − 1.
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Fig. 1 – Piecewise continuous function.

Definition 1.2. A function f is said to be periodic, with a period
p if f(x + p) = f(x) for all x.

Example 1.1.
1. f(x) = sin(x) is a periodic function with period p = 2π.
2. f(x) = tan(x) is a periodic function with a period p = π.



1 DEFINITIONS 4'

&

$

%

Fig. 2 – Periodic function.

Definition 1.3. Two functions f and g are said to be orthogonal
with respect to the weight function q on [a, b] if

∫ b

a

f(x)g(x)q(x)dx = 0



1 DEFINITIONS 5'

&

$

%

For a given function q, it is often possible to find an infinite
sequence of functions φ1, φ2, . . . such that

∫ b

a

φn(x)φm(x)q(x)dx = 0 if m 6= n

The sequence {φn}n≥1 is called an orthogonal system. The norm of
φn is defined as follows

‖φn‖ =

√

∫ b

a

φ2
n(x)q(x)dx

Moreover if ‖φn‖ = 1, {φn}n≥1 is called an orthonormal system.

Example 1.2.

1. {sin(nx)}n≥1 is an orthogonal system on the interval [0, π] with
respect to q(x) = 1. Indeed,
∫ π

0

sin(nx) sin(mx)dx =
1

2

∫ π

0

[cos((m − n)x) − cos((m + n)x)] dx
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For n 6= m

=

[

1

2(m − n)
sin((m − n)x) −

1

2(m + n)
sin((m + n)x)

]π

0

= 0.

2. {
√

2

π
sin(nx)}n≥1 is an orthonormal system.

2 Fourier Series

Let f be a piecewise continuous function defined on [−π, π]. Then
one can express f as a linear combination of sine and cosine
functions as follows :

f(x) ∼
1

2
a0 +

∞
∑

k=1

ak cos(kx) + bk sin(kx)

where a0, ak and bk are constants to be determined.
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In order to find a0, one has

∫ π

−π

f(x)dx =

∫ π

−π

(

1

2
a0 +

∞
∑

k=1

ak cos(kx) + bk sin(kx)

)

dx

=
1

2
a0 · 2π +

∞
∑

k=1

(

ak

∫ π

−π

cos(kx)dx + bk

∫ π

−π

sin(kx)dx

)

=⇒ a0 =
1

π

∫ π

−π

f(x)dx

On the other hand, to find an,
∫ π

−π

f(x) cos(nx)dx =

∫ π

−π

(

1

2
a0 cos(nx) +

∞
∑

k=1

ak cos(kx) cos(nx) + bk sin(kx) cos(nx)

)

dx
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= 0 + an

∫ π

−π

cos(nx) cos(nx)dx + 0 = anπ

=⇒ an =
1

π

∫ π

−π

f(x) cos(nx)dx, n = 1, 2, . . .

Similarly

bn =
1

π

∫ π

−π

f(x) sin(nx)dx, n = 1, 2, . . .

an and bn are called Fourier coefficients.

Example 2.1. Let us consider the function

f(x) =

{

−1 −π ≤ x < 0
1 0 ≤ x ≤ π

By using the formula of a0, an and bn, we find that

a0 =
1

π

∫ π

−π

f(x)dx =
1

π

∫ 0

−π

(−1)dx +
1

π

∫ π

0

(1)dx = 0.
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an =
1

π

∫ π

−π

f(x) cos(nx)dx =
1

π

∫ 0

−π

− cos(nx)dx +
1

π

∫ π

0

cos(nx)dx

=
1

π

(

[−
1

n
sin(nx)]0−π + [

1

n
sin(nx)]π0

)

= 0.

bn =
1

π

∫ π

−π

f(x) sin(nx)dx =
1

π

∫ 0

−π

− sin(nx)dx+
1

π

∫ π

0

sin(nx)dx

=
1

π

(

[
1

n
cos(nx)]0−π + [−

1

n
cos(nx)]π0

)

=
1

nπ
([cos(0) − cos(−nπ)] + [cos(0) − cos(nπ)])

=
2

nπ
(1 − cos(nπ)) =

2

nπ
(1 − (−1)n).

Thus the Fourier series of f is given by

f(x) ∼

∞
∑

n=1

2

nπ
(1 − (−1)n) sin(nx).
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Theorem 2.1. If f is a periodic function with period 2π and f
and f ′ are piecewise continuous on [−π, π], then the fourier series

1

2
a0 +

∞
∑

k=1

ak cos(kx) + bk sin(kx)

is convergent. The sum of the Fourier series is equal to f(x) at all
numbers x where f is continuous. At the numbers x where f is
discontinuous, the sum of the Fourier series is the average of the
right and the left limits, that is

1

2
(f(x+) + f(x−)).

3 Fourier Sine + Cosine Series

In this section we show that the series of sines only (and the series
of cosines only) are special cases of a Fourier series.
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3.1 Fourier Sine Series

Definition 3.1. An odd function is a function with the property
f(−x) = −f(x).

Example 3.1.
1. f(x) = x3.
2. f(x) = sin(4x).

Remark 3.1. The integral of an odd function over a symmetric
interval is zero.

Let us calculate the Fourier coefficients of an odd function :

a0 =
1

π

∫ π

−π

f(x)dx = 0

an =
1

π

∫ π

−π

f(x) cos(nx)dx = 0

bn =
1

π

∫ π

−π

f(x) sin(nx)dx =
2

π

∫ π

0

f(x) sin(nx)dx



3 FOURIER SINE + COSINE SERIES 12'

&

$

%

Since an = 0, all the cosine functions will not appear in the Fourier
series of an odd function. The Fourier series of an odd function is
an infinite series of odd functions (sines) :

f(x) ∼
∞
∑

n=1

bn sin(nx)

Now assume that the function f is only given for 0 ≤ x ≤ π and
not necessarily odd. In this case f can be extended as an odd
function. This extension is called the odd extension of f . Moreover
the Fourier series of the odd extension of f only involves sines :

the odd extension of f(x) ∼
∞
∑

n=1

bn sin(nx), −π ≤ x ≤ π.

However, we are only interested in what happens [0, π]. In this
interval f is identical to its odd extension :
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f(x) ∼

∞
∑

n=1

bn sin(nx), 0 ≤ x ≤ π,

where

bn =
2

π

∫ π

0

f(x) sin(nx)dx

3.2 Fourier Cosine Series

Definition 3.2. An even function is a function with the property
f(−x) = f(x).

The sine coefficients of a Fourier series will be zero for an even
function,

bn =
1

π

∫ π

−π

f(x) sin(nx)dx = 0.

The Fourier series of an even function is an infinite series of even
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functions (cosines) :

f(x) ∼
a0

2
+

∞
∑

n=1

an cos(nx).

The coefficients of the cosines may be evaluated using information
about f(x) only on [0, π], since

a0 =
1

π

∫ π

−π

f(x)dx =
2

π

∫ π

0

f(x)dx

an =
1

π

∫ π

−π

f(x) cos(nx)dx =
2

π

∫ π

0

f(x) cos(nx)dx

If the function f is only given for 0 ≤ x ≤ π and not necessarily
even, then f can be extended as an even function, which called the
even extension of f . Moreover the Fourier series of the even
extension of f only involves cosines :
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the even extension of f(x) ∼
∞
∑

n=0

an cos(nx), −π ≤ x ≤ π.

In the interval [0, π], the function f is identical to its even
extension :

f(x) ∼
∞
∑

n=1

an cos(nx), 0 ≤ x ≤ π,

where

an =
2

π

∫ π

0

f(x) sin(nx)dx

Example 3.2. Let us consider the function f(x) = 1 on [0, π]. The
Fourier cosine series has coefficients

a0 =
2

π

∫ π

0

1dx = 2

an =
2

π

∫ π

0

cos(nx)dx = 0
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Then f(x) ∼ a0

2
+
∑∞

n=1
an cos(nx) = 1.

4 Differentiation and Integration of
Fourier Series

Let us consider a continuous function on the interval [−π, π], with
Fourier series

f(x) ∼
a0

2
+

∞
∑

n=1

an cos(nx) + bn sin(nx),

then f ′ has a Fourier series

f ′(x) ∼
∞
∑

n=1

−nan sin(nx) + nbn cos(nx).

That is f ′(x) can be written as a Fourier series
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f ′(x) ∼
∞
∑

n=1

ãn cos(nx) + b̃n sin(nx),

where

ãn = bnn =
n

π

∫ π

−π

f(x) cos(nx)dx

b̃n = −ann = −
n

π

∫ π

−π

f(x) sin(nx)dx.

For any function f on the interval [−π, π], its integral has Fourier
series (assume that a0 = 0)

F (x) =

∫ x

f(x̃)dx̃ ∼
ã0

2
+

∞
∑

n=1

ãn cos(nx) + b̃n sin(nx)

where

ãn = −
1

n
bn, b̃n =

1

n
an, and ã0 =

1

π

∫ π

−π

f(x)dx.
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Example 4.1. Let us consider the function

f(x) =

{

−1 −π ≤ x < 0
1 0 ≤ x ≤ π

The Fourier series is
∑

kodd

4

kπ
sin(kx).

The Fourier series of

F (x) =

∫ x

0

f(x̃)dx̃ =

{

−1 −π ≤ x < 0
1 0 ≤ x ≤ π

,

is given by

F (x) =
π

2
+
∑

kodd

−4

k2π
cos(kx).
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5 Complex Fourier Series

Recall that eiθ = cos(θ) + i sin(θ) then

cos(θ) =
eiθ + e−iθ

2
and sin(θ) =

eiθ − e−iθ

2i

Thus the Fourier series can be written using complex variables

f(x) ∼
a0

2
+

∞
∑

k=1

ak cos(kx) + bk sin(kx)

=
a0

2
+

∞
∑

k=1

ak

[

eikx + e−ikx

2

]

+ bk

[

eikx − e−ikx

2i

]

=
a0

2
+

∞
∑

k=1

(ak − ibk)

2
eikx +

(ak + ibk)

2
e−ikx
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= c0 +
∞
∑

k=1

ckeikx + c−ke−ikx

where

c0 =
a0

2
=

1

2π

∫ π

−π

f(x)dx

ck =
(ak − ibk)

2
=

1

2π

∫ π

−π

f(x)(cos(kx)−i sin(kx))dx =
1

2π

∫ π

−π

f(x)e−iπxdx

c−k =
(ak + ibk)

2
=

1

2π

∫ π

−π

f(x)(cos(kx)+i sin(kx))dx =
1

2π

∫ π

−π

f(x)eiπxdx

In summary, the complex Fourier series is

f(x) ∼
∞
∑

−∞

ckeikx

where

ck =
1

2π

∫ π

−π

f(x)e−ikxdx.
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Example 5.1. Let us consider the function

f(x) =

{

−1 −π < x < 0
1 0 < x < π.

The complex Fourier series coefficients are

ck =
1

2π

(
∫ 0

−π

−1e−ikxdx +

∫ π

0

1e−ikxdx

)

=

{

1

2π

(

−1

−ik
e−ikx]0−π + 1

−ik
e−ikx]π0

)

, k 6= 0
1

2π
(−π + π) , k = 0

=

{

1

2kiπ

(

1 − eikπ − e−ikπ + 1
)

, k 6= 0
0, k = 0

=

{

−i

kπ

(

1 − 1

2
(eikπ − e−ikπ)

)

, k 6= 0
0, k = 0

=

{

−i

kπ
(1 − cos(kπ))) , k 6= 0

0, k = 0
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=

{

−2i

kπ
, k odd

0, k even

Then

f(x) ∼
∑

kodd

−2i

kπ
eikx.

6 Fourier Series over any Interval

In general, Fourier series, sine and cosine series may be defined not
just over [−π, π] but over any interval [a, b]. Let us consider a
function F (t) periodic with a period 2π and t ∈ [−π, π], then the
Fourier series of F is given by

F (t) ∼
a0

2
+

∞
∑

k=1

ak cos(kt) + bk sin(kt),
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where

ak =
1

π

∫ π

−π

f(t) cos(kt)dt and bk =
1

π

∫ π

−π

f(t) sin(kt)dt

Let a and b be two constants. Define the new variable x as follows

x =
1

2
(b + a) +

1

2π
(b − a)t ∈ [a, b]

t = π

(

2x − b − a

b − a

)

.

Now let us define the function f by

f(x) = f

(

1

2
(b + a) +

1

2π
(b − a)t

)

= F (t)

The Fourier series of the function f is

f(x) ∼
a0

2
+

∞
∑

k=1

ak cos

(

kπ
(2x − b − a)

b − a

)

+ bk sin

(

kπ
(2x − b − a)

b − a

)
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where

ak =
2

b − a

∫ b

a

f(x) cos

(

kπ
(2x − b − a)

b − a

)

dx

and

bk =
2

b − a

∫ b

a

f(x) sin

(

kπ
(2x − b − a)

b − a

)

dx.

In particular, if b = l, a = −l and f is periodic with period 2l

f(x) ∼
a0

2
+

∞
∑

k=1

ak cos

(

kπx

l

)

+ bk sin

(

kπx

l

)

where

ak =
1

l

∫ l

−l

f(x) cos

(

kπx

l

)

dx and bk =
1

l

∫ l

−l

f(x) sin

(

kπx

l

)

dx

Example 6.1. Let us consider the function f defined as follows

f(x) =

{

0, −2 ≤ x < 0
2 − x, 0 < x ≤ 2.
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By using the formula of a0, an and bn, we find that

a0 =
1

4

∫ 2

0

(2 − x)dx,

ak =
1

2

∫ 2

0

(2 − x) cos
kπx

2
dx, k = 1, 2, . . .

and

bk =
1

2

∫ 2

0

(2 − x) sin
kπx

2
dx, k = 1, 2, . . .

Evaluating these integrals gives

a0 =
1

2
, ak =

2

k2π2
[1 − (−1)k] and bk =

2

kπ

where use has been made of the fact that cos(kπ) = (−1)k and
sin(kπ) = 0. Thus the Fourier series becomes

f(x) =
1

2
+

2

π

∞
∑

k=1

(

[1 − (−1)k]

k2π
cos

kπx

2
+

1

k
sin

kπx

2

)

.
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The sine series of a function f on [0, l] is

f(x) ∼
a0

2
+

∞
∑

k=1

ak cos
kπx

l

where

ak =
2

l

∫ l

0

f(x) cos
kπx

l
dx.

The cosine series of a function f on [0, l] is

f(x) ∼
∞
∑

k=1

ak sin
kπx

l

where

ak =
2

l

∫ l

0

f(x) sin
kπx

l
dx.


